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Abstract
The equations governing the propagation of polariton short solitary waves in
a ferromagnetic slab are derived by means of a multiscale scheme. The effect
of damping on the line solitons is discussed. A background instability occurs.
Analysis shows that it can be suppressed by narrowing the slab in which the
wave propagates.

PACS numbers: 41.20.Jb, 75.30.Ds, 02.30.Ik, 78.20.Bh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bulk magnetic polaritons have been observed, mainly in antiferromagnets [1–3], in the linear
regime. The linear theory has been developed [2, 4, 5]. However, the magnetic matter–wave
interaction is intrinsically nonlinear. The propagation of solitons formed of polaritons in
ferromagnets has been considered. The first studies were devoted to the slowly varying
envelope approximation [6, 7]. The ferromagnetic case has also been investigated [8].
The long-wave approximation allowed us to describe the propagation of solitary waves,
and of KdV (Korteweg–de Vries) solitons [9–11]. More recently short waves have been
considered [12–14]. The latter structures have sizes much more relevant to available
experiments than the former ones.

The short-wave approximation accounts in particular for the propagation of line solitons.
It has been shown that these structures were stable for certain values of the soliton
parameter [13]. However, two problems arise. First, the model derived in [13] neglects
both the damping and the demagnetizing field, which are of importance in real ferromagnets.
Second, numerical simulations of the stable line soliton reveal an instability of the constant
background. The aim of the present paper is first to derive a more accurate model including
damping and demagnetizing fields, and second to explain the background instability and to
propose a way of re-stabilizing of the wave.
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Figure 1. The configuration considered.

2. A (2+1)-dimensional generalization of the sine-Gordon equation

2.1. Basic equations

The evolution of the magnetic field H is governed by the Maxwell equations, which reduce to

−∇(∇ · H) + �H = 1

c2
∂2
t (H + M), (1)

where c = 1/
√

µ0ε̃ is the speed of light with ε̃ being the scalar permittivity of the medium.
The magnetization density M obeys the Landau–Lifschitz equation, which reads as

∂tM = −γµ0M ∧ Heff +
σ

Ms

M ∧ (M ∧ Heff), (2)

where γ is the gyromagnetic ratio, µ0 is the magnetic permeability of the vacuum, σ is
the damping constant and Ms is the saturation magnetization. The effective magnetic field is
Heff = H−N ·M, where N is the demagnetizing factor tensor. We consider a ferromagnetic film
lying in the xy plane, so that N is diagonal with (Nx,Ny,Nz) = (0, 0, 1). The configuration
is shown in figure 1.

We consider volume polaritons, in this case the wavelengths are large with regard to the
exchange length. The typical wavelengths considered here are in the range of 10–100 µm.
According to these assumptions, inhomogeneous exchange can be neglected, and the pinning
boundary conditions are not to be considered. The slab thickness is assumed to be large with
respect to the wavelength, say typically about 0.5 mm. This justifies that the exact boundary
conditions are replaced by a mere demagnetizing tensor, and not taken into account, which
would be necessary if we would consider surface modes or volume modes in thin films, but is
not required here. We also assume that the crystalline and surface anisotropy of the sample can
be neglected. The quantities M, H and t are rescaled into µ0γ M/c, µ0γ H/c and ct , so that
the constants µ0γ /c and c in equations (2) and (1) are replaced by 1, Ms by m = µ0γMs/c

and σ by σ̃ = σ/µ0γ , which is dimensionless.
The sample is supposed to be magnetized to saturation by means of an external uniform

field, according to

M0 = (m cos ϕ,m sin ϕ, 0), H0 = αM0. (3)

The static field H0 lies in the plane xy, which is the plane of the film, and is thus collinear to
the magnetization M0. The dispersion relation of linear waves propagating over this steady
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state is, if the damping is neglected (this approximation is justified below),

ω2(ω2 − k2)2 + m2[(2 + α)ω2 − (1 + α)k2]

× [(ky cos ϕ − kx sin ϕ)2 − (1 + α)ω2 + αk2] = 0, (4)

where α is the ratio of the applied field to the saturation magnetization, cf equation (3). It
compares to the one derived in bulk media [13]. The coefficients (1 + α) and α in the second
parentheses become (2+α) and (1+α) respectively when the demagnetizing field is taken into
account. Recall that the short-wave approximation is possible when the dispersion relation
admits an expansion of the form [15, 16]

ω = a

ε
+ bε + cε3 + dε5 + · · · , (5)

where the small parameter ε is linked to the magnitude of the wavelength through kx = k0/ε,
which corresponds to short waves. As in [13], where demagnetizing field was neglected,
computation of the coefficients a, b, c, d shows that the expansion exists when ϕ = π/2
only. Thus the short-wave approximation is possible when the propagation direction x is
perpendicular to the magnetization density, i.e. the short-wave soliton can propagate in a
direction close to the perpendicular to the magnetization density only.

The direction of the wave propagation is assumed to be close to the x-axis, in such a way
that the y variable gives only account of a slow transverse deviation. Therefore ky is assumed
to be very small with respect to kx and we write ky = l0, of order 0 with respect to ε. The
phase up to order ε is thus

1

ε
(k0x − at) + l0y − εbt, (6)

which motivates the introduction of new variables

ζ = 1

ε
(x − V t), y = y, τ = εt. (7)

The variable ζ allows us to describe the shape of the wave propagating with speed V , it assumes
a short wavelength about 1/ε. The slow time variable τ accounts for the propagation at very
long time, on distances very large with regard to the wavelength. The transverse variable y

has an intermediate scale, as in KP (Kadomtsev–Petviashvili)-type expansions [17].
Let us consider a slab with width about 0.5 cm. The slab width will play the role of the

reference length. Taking the value of the perturbative parameter as ε = 1/100, it yields a
length of the solitary wave in the range of 50 µm or less, and propagation distances which
could in principle reach the meter, but are limited in practice to a few centimeter. The slab
thickness is assumed to have an intermediary scale between the wavelength and the width, say
about 0.5 mm.

2.2. The short-wave approximation

Let us now turn to the nonlinear aspect. Equation (7) allows us to introduce rescaled space
and time operators, as

∂

∂x
= 1

ε

∂

∂ζ
,

∂

∂y
= ∂

∂y
,

∂

∂t
= −V

ε

∂

∂ζ
+ ε

∂

∂τ
. (8)

The fields M and H are expanded in power series of ε, as

M = M0 + εM1 + ε2M2 + · · · , (9)

H = H0 + εH1 + ε2H2 + · · · , (10)
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where M0, H0, M1, H1, . . . are functions of (ζ, y, τ ), and analogously for H. The boundary
conditions are

lim
ζ−→−∞

Hj = lim
ζ−→−∞

Mj = 0, (11)

for all j � 1, and

lim
ζ−→−∞

H0 = α lim
ζ−→−∞

M0 = α(0,m, 0). (12)

We further assume that the damping is weak. In yttrium-iron-garnet (YIG) films, envelope
solitons have been observed [18, 19]. It has been shown that the observations could be
accounted for using a NLS-type model including the damping term. Such a model can
be derived for the Landau–Lifschitz and Maxwell equations (2) and (1), assuming that the
dimensionless damping constant σ̃ is small, of order ε2 where ε is a perturbative parameter
measuring the amplitude of the magnetic wave pulse [20]. In YIG films, σ̃ can be as small as
10−4 [21], which would correspond to a perturbative parameter ε � 0.01. We will show below
that under this assumption, the effect of the damping can be completely neglected within the
short-wave approximation. In order to be able both to justify this statement and to derive an
equation which takes into account a stronger damping, we set σ̃ = εpσ̄ . The value p = 2
holds for a YIG film with low losses, and p = 1 in other cases. Let us first assume that p = 1.

Expansions (9), (10) and operators (8) are reported into equations (2) and (1), and solved
order by order. At leading order 1/ε2, as in the bulk medium, is found that M0 is uniform,
that Hx

0 = 0, and that the velocity is V = 1, i.e., in physical units, the speed c of light in the
medium. At order 1/ε, we get expressions of M1 and Hx

1 identical to those obtained in [13].
At order ε0, the damping appears in equation (2), which yields

∂ζ M2 =

⎛
⎜⎝

mHz
1

−Mx
1 Hz

0

−mHx
1 + Mx

1 H
y

0 + σ̄mHz
0

⎞
⎟⎠ . (13)

Then, making use of (13) into equation (1), we get the conditions

−∂yH
x
1 + 2∂τH

y

0 + Mx
1 Hz

0 = 0, (14)

as in the bulk, and

∂2
yHz

0 + 2∂ζ ∂τH
z
0 + m∂ζH

x
1 − ∂ζ

(
Mx

1 H
y

0

) − σ̄m∂ζH
z
0 = 0, (15)

which, in addition, includes the damping term −σ̄m∂ζH
z
0 . Using the relations obtained at

previous orders, equations (14) and (15) reduce to

∫ ζ

−∞
∂2
yH

y

0 dζ ′ + ∂yM
x
1 + 2∂τH

y

0 +
1

m
Mx

1 ∂ζM
x
1 = 0, (16)

−1

m
∂2
y ∂ζ M

x
1 − 2

m
∂2
ζ ∂τM

x
1 + m∂yH

y

0 + m∂ζM
x
1 + ∂ζ

(
Mx

1 H
y

0

)
+ σ̄ ∂2

ζ Mx
1 = 0. (17)

Equations (16) and (17) yield the sought asymptotic model.

2.3. The nonlinear equations

Only equation (17) contains a damping term. Furthermore, it has been derived under the
assumption of a relatively strong damping p = 1. If we assume, as is reasonable in
a YIG film, the assumption of small damping corresponding to p = 2, it is clear from
the above calculation that the first correction due to the damping will appear at the next
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order in the perturbative scheme only, and hence the asymptotic model obtained will not
contain any damping term at all. It can be recovered setting σ̄ = 0 in equation (17). This
differs from the case of envelopes, for which damped solitons were obtained under the same
assumptions [20]. The discrepancy comes from the fact that the propagation distance is much
smaller in the short-wave approximation (∝1/ε) than for the nonlinear envelope evolution
(∝1/ε2), while the distance characteristic of the damping is the same (∝1/ε).

If damping is neglected, system (16) and (17) exactly coincides with the system derived
in [13], in which the demagnetizing factor was omitted. Hence, within the considered
approximation, and for the geometry considered, the demagnetizing field has no effect on
the wave propagation, which is rather remarkable. We check that the following terms in the
perturbative expansion can be computed, which ensures the validity of the asymptotic.

Setting

A = −H
y

0

m
− 1, B = Mx

1

2m
, (18)

X = −m

2
ζ, Y = my, T = mτ, (19)

s = −σ̄

2
, (20)

reduces equations (16) and (17) to

∂X∂T B = AB + ∂2
Y B −

∫ X

∂Y A − s∂XB, (21)

∂X∂T A = −∂X(B∂XB) + ∂2
Y A + ∂X∂Y B, (22)

where
∫ X

f denotes a primitive of f vanishing as X −→ +∞. Note that σ < 0 and hence
s > 0.

Some symmetry is recovered in the system by setting

A = ∂XC, (23)

which reduces system (21), (22) to

CXT = −BBX + CYY + BY , (24)

BXT = BCX + BYY − CY − sBX, (25)

where the subscripts denote partial derivatives (i.e. CY = ∂Y C, and so on).

2.4. The line soliton

Assume now that the damping is small according to σ̃ = ε2σ̄ , which is valid e.g. in YIG.
Then the damping is negligible, and the demagnetizing field has no effect. Hence the results
established in bulk media [13] apply.

In (1+1) dimensions, setting

BX = A sin θ, CX = sin θ, (26)

the system (24), (25) reduces to

θXT = A sin θ, (27)
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A being a constant. Equation (27) is the sine-Gordon equation, which is completely integrable
by means of the inverse scattering transform method [22, 23], and was first derived in the
frame of electromagnetic waves in ferromagnets in [12]. It admits the kink solution

B = 2w sech ζ, C = w(2 tanh ζ − ζ ), ζ = (X − wT ), (28)

where the velocity w of the kink is an arbitrary real parameter. Solution (28) to (27) obviously
yields a solution of system (24), (25) in the form of a line soliton: a solitary wave invariant
in the transverse direction. A more general plane solitary wave can be deduced from solution
(28), as

B = p + 2w sech ζ, C = w(2 tanh ζ − ζ ), ζ = X + pY − (w − p2)T , (29)

where p is an arbitrary real parameter. For nonzero p,w does not represent the soliton velocity
any more. The stability of the line soliton (28) with respect to slow transverse perturbations is
studied in [13]. It is shown that the line soliton is stable if its velocity w is less than

wth = π2

8
− 1, (30)

and unstable for w > wth. This has been confirmed by numerical analysis.
The various change of variables we used to derive (24), (25) contain a sign change with

respect to x. Further the velocity w of the line soliton is a correction to wave speed with respect
to the speed of light in the medium. Therefore, the stable line solitons, which have a negative
velocity relative to the normalized variables, have a velocity larger than c. In some sense, they
are ‘supraluminous’. There is no contradiction in this fact, since the refractive index

√
εr of

the medium is very large, and the relative velocity w represents a small correction (of order
ε2). Hence the corrected velocity, although it is larger than c, will be smaller than the light
velocity in vacuum c0.

The numerical scheme used for solving the model without damping [13] is
straightforwardly generalized to take the damping into account. Figures 2 and 3 show the
effect of damping on a line soliton.

The initial data are perturbed, so that stability is evidenced. The box size is determined
by 0 < x < 24,−40 < y < 40, 0 < t < 30, the number of points is (nx, ny, nt ) =
(1000, 140, 24000). The soliton decay due to the damping is clearly seen. However, the
damping of B (or Hz

0 ) is much slower than it would be in the linear case. The amplitude is
indeed reduced from 0.4 to about 0.25, against 0.4 e−sT = 0.15 in the linear case. In contrast,
C (i.e. H

y

0 ) is damped too, despite equation (24) contains no damping term. The damping of
this component is hence due to the nonlinear interaction between the two components only.
Numerical investigation shows that the damping has no other effect.

3. Suppression of a background instability

3.1. Instability

Even when the line soliton itself is stable, the numerical resolution of system (24), (25) shows
some other kind of instability, which appears to be an instability of the transverse modulation
of the background. An example is given in figure 4, corresponding to an initial background
level w close to 0.

Oscillations in the Y-direction arise spontaneously. The wavelength can be determined
using a fast Fourier transform. For example, it is about 13.4, which corresponds to a
wavevector q � 0.47. Note that this value becomes modified for larger values of X.
This instability is not suppressed when damping is introduced, it occurs with the data
of figures 2 and 3, for larger X and T.
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Figure 2. Time evolution of the longitudinal profile of the line soliton. The soliton parameter is
w = 0.4 in the stable range. The normalized damping constant is σ̄ = −0.4.

This background is defined by a uniform value of the components H
y

0 ,Hz
0 of the magnetic

field, which are related to the dynamical variables B,C through

H
y

0 = −m(1 + CX), Hz
0 = −mBX. (31)

The uniform background corresponds thus to solutions of the form C = Xf,B = Xg, where
f and g are constants. Analysis of the modulation instability of these solutions consists in
introducing a small harmonic variation of f and g relative to Y, and studying its evolution
with the time T. A standard linear stability analysis would involve system (24), (25), linearized
about the uniform background solution. Due to the particular dependence of system (24), (25)
with respect to X and T, the coefficients of the linearized system depend on X, and the standard
procedure cannot be used. Therefore we introduce a scaled time τ = XT , and assume that

C = Xf (Y, τ = XT ), (32)

B = Xg(Y, τ = XT ). (33)

Expressions (32), (33) are reported into system (24), (25), and then a small time approximation
is used: the terms proportional to τ = XT are neglected. We get the following equations:

2fτ = −g2 + gY + fYY , (34)

2gτ = fg + gYY − fY − s

X
g. (35)

The damping term is not independent of X, and even singular. Neglecting damping (s = 0)

would allow us to avoid the difficulty. Looking for constant solutions f = f0, g = g0 of (35),
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Figure 3. Evolution of a perturbed stable damped line soliton. Left: the initial state. Right: after
a propagation time T = 4.8. The decrease of the soliton amplitude due to the damping, and the
decrease of the perturbation amplitude due to the stability, are observed (same data as figure 2).

0 10 20 30
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5

10

15

20

Y

X

Figure 4. Background instability: oscillations in the Y-direction arise spontaneously. The initial
data are a perturbed stable line soliton with velocity w = 0.02, the evolution time is T = 22, and
damping is neglected ( σ̄ = 0).

we see that g0 must be zero while f0 remains free. This is consistent with the kink solution
(28) of system (24), (25) with no damping (s = 0). In the present limit it yields C � −wX,
and B � 0. Therefore we set

f = −w + γ e(iqY+λτ) + · · · , (36)
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Figure 5. Plot of the growth rate λ against the transverse wave number q.

g = β e(iqY+λτ) + · · · . (37)

Reporting (37) into equations (24) and (25), we find that the condition of existence of nonzero
β, γ is

(2λ + q2)(2λ + q2 + w̃) = q2, (38)

where w̃ = w + s/X. Let us denote by λ1 and λ2 the two solutions of equation (38).
Figure 5 presents the largest of the two solutions λ1 and λ2 against q for −1 < w < 0
(precisely w̃ = −0.5), which allows us to depict the general case.

Since λ1λ2 and λ1 + λ2 have the same sign as (q2 + w̃ − 1) and −(2q2 + w̃) respectively,
it is seen that λ1 and λ2 are both negative for any real q if w̃ > 1, while one of them is positive
for |q| <

√
1 − w̃ if w̃ < 1. The maximum of λj is obtained for q = ± 1

2

√
1 − w2 when

−1 < w < 1, and q = 0 when w < −1. It gives the wavelength of the transverse oscillations
that arise spontaneously due to the instability. As an example, for a background level w = 0,
the most unstable wavevectors are q = ±1/2, and the wavelength is 2π/q = 4π , which is in
good accordance with the numerical results of figure 4.

The conclusion is that the uniform background is stable when w̃ > 1, while it is unstable
when w̃ < 1. In terms of the magnetic field, the background level w is w = −CX = 1+H

y

0

/
m,

or in physical units w = 1 + H
y

0

/
Ms . Neglecting the damping, the stability condition w > 1

corresponds to a magnetization which has the same direction as the applied field, and it is
well known that the opposite situation is unstable. Recall that the line soliton is stable if
w < π2/8 − 1 � 0.24, which always belongs to the domain of unstable background.

Since w̃ > w, the stability condition is less restrictive if damping is taken into account.
Transverse stability is possible for a small H

y

0 in the direction opposite to the magnetization,
on a short distance.

3.2. Filtering

In the case of the unstable background, with the magnetic field and magnetization in opposite
directions, the instability is due to the small wave numbers q, i.e. long wavelengths. If some
filtering of the long wavelengths is introduced, the stability can be recovered. This can be
done by limiting the width l of the sample, since the allowed wave numbers are at most 2π/l.
Thus the background is stabilized if

l <
2π√
w̃ − 1

. (39)

9
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Figure 6. Stable propagation of an initially perturbed line soliton. The background is stabilized
using the narrowing of the stripe where propagation occurs. The line-soliton velocity is w = −0.4,
the evolution time is T = 8 and damping is neglected (σ̄ = 0.).

A numerical example and confirmation of this property is given in figure 6. The value
w = −0.4 of the velocity corresponds to a stable line soliton but to an unstable background.
The maximal width which is expected to eliminate the transverse instability of the background
is l = 2π/

√
1.4 � 5.31, according to (39). The computation has been performed using

l = 5.30, and periodic boundary conditions in the transverse direction. The instability is
suppressed, which confirms numerically the above analysis.

The threshold width l can be computed according to condition (39) above, in physical
units, it is

l = 2πc

µ0γ

√
−H

y

0 Ms

. (40)

We consider typical values as H0 = 2 kOe,Ms (or 4πMs) = 1800 Oe, γµ0 = 1.759 ×
107 rad s−1 Oe−1. The speed of light is c = c0/

√
εr , where c0 = 3 × 108 m s−1, and εr is the

relative permittivity of the medium, for YIG we can take εr = 12, then c = 8.66 × 107 m s−1.
We get l � 1.6 cm. The length of the single-oscillation line soliton is 1 relative to the
normalized variable X, which yields

x0 = 2εc

γµ0Ms

, (41)

in physical units. It depends on the perturbative parameter ε and hence is adjustable in some
range. For the above data, and taking ε = 1/100, we get x0 � 50 µm.

An analogous phenomenon of transverse stabilization of a wave depending on the film
width has been experimentally observed in the case of spin wave envelope solitons in YIG
films [24]. The authors observed stable propagation of a line soliton in a narrow stripe of width
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1.5 mm, while the transverse self-focusing occurred in a wide film of 18 mm width. Thus
the transverse instability of the wave is suppressed when the width of the film is decreased
below some threshold which lies between 1.5 mm and 18 mm. The analogy, although not
complete, is clear, and the thresholds for the width have the same order of magnitude. Note
further that, in the experimental situation, the transverse modes to be considered are the guided
mode of the stripe, and not pure Fourier modes as in the above theory. On this ground, it
could be expected that the stability maximal width will be smaller in the experiment than the
value predicted above. Indeed, numerical computation using free lateral boundary conditions
instead of periodic ones shows the stabilization for a lower width only, and an analogous
behavior is expected for the exact guiding conditions. Note however that the experimental
result concerns a propagation mode, backward volume magnetostatic waves, which differs
from the one considered in the present paper, and that the transverse instability considered in
the experiment is that of the wave, while it concerns the background in the above theory.

4. Conclusion

The equations governing the evolution of a short solitary wave in a ferromagnetic slab have
been derived. The wave belongs to the so-called electromagnetic or polariton range. The
analysis shows that both demagnetizing field and damping can be neglected, at least in low-
loss materials such as YIG. The effect of damping is only a decay of the soliton amplitude,
and this decay is slower with respect to the corresponding linear regime.

A background instability has been observed in numerical simulations, it corresponds to
a magnetization reversed with respect to the applied field. This instability can be suppressed
if the slab is narrow enough. The threshold width for the stabilization, about 1.5 centimeters,
falls in the range of sample widths currently used in experiments. If the unstable state where
the magnetic field and magnetization have opposite directions perpendicular to the sample
axis is realized, solitary waves can propagate along the slab without deformation, and the
transverse instability is suppressed if the slab is narrow enough.
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